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Abstract-Composite laminates under a:<ial stretching are analyzed by means of the enriched finite
elements. The ,..; singularity and log r singularity arc included to deseribe the edge effects. It is
concluded that. in general. they are both necessary if reliable information abuut the strength uf
those singularities is to be obtained.

I. INTRODUCTION

Recent investigations (Ting and Chou. 1981 : Zwiers £'1 al.. 1981). have shown that. with
the exception of the (/1/ -(}) composite and a special /1//1' t~tmily of composites. the log
arithmic stress singularity :tt the free edge of composite laminates is present irrcspective of
the conditions on the boundary rcmote from the singular p{)int. This is in contrast with the
more comnwn r,j (-I < () < 0) stress singularity (Wang and Choi. 1981a. b: Z\vicrs £'1 al.•
1981). whidl may cxist at the frce edge of any laminate. but the actual presencc of which
cannot be asccrtained until the complctc boundary value probkm is solved.

Although the presence of the logarithmic singularity may, of course. be sullicient to
cause delamination at the free edge of the composile, the role of the possibk l singularity
should not be ignored. The r" singularity is much stronger than the logarithmic singularity
and, if prcsent, can he primarily responsible for the onset of delamination. [t is therefore
worthwhile to eX:llnine relative importance of the two singularities, their interaction and
tlll:ir influence on the stress distribution. This task is however beyond the reach of the
analytic approach. The tinite ekment technil/ue incorporating analytical results of the
asymptotic analysis is used in this paper to gain some insight into the problem.

It has been found in the past th:tt as l~tr as the stress distribution in problems involving
singularities is concerned even standard techniques, such as properly processed usual (non
singular) finih': dements, have high predicting capabilities (Rybicki, [971: ~krakovich,

IlJ76; Ilcrakovich ('I al., 1976: Wang and Crossman, 1977) (as do other mcthods which
can bc found in Pipcs and Pagano (1970). G:tllagher (1971), Pagano (1974, 1978), Tang
(1975), Tang and Lcvy (1975), Altus ('I al. (1980), Spilker and Chou (1980), Ting and Chou
( 19X I), Wang and Dickson (197X), Wang and Choi (19X2a, b) and Wang and Yuan (1983».
Only in the immediate vicinity of the singular point, the solution obtained in such a standard
way is not accurate and its convergenl:e is generally very slow (Tong and Pian, 1973). The
stresscs around and at the singular point obtained by means of standard tinite clement
techniques are linitc, although the stress gradients arc usually high indicating the prcsence
ofa singularity. However, once analytical methods, such as asymptotic technil/ucs. establish
the possible existence and order of the singularity. the numerical techniq ues can incorporatc
the analytical results to provide complete and accurate information characterizing the
solution. In addition to the stress distribution away from the singular point. they can then
give accurate valucs of the strength of the existing singularities. i.e. the stress intensity
factors. In fact. the stress intensity factors may be even more important than the stress
distribution away from the singular point since, in most cases. intensity of the stresses at
the singular point may be directly linked to the initiation of delamination. Thus, the
calculation of the stress intensity f:lctors is stressed herein.

t Present audress: Polymers Division. National Bureau or Standards. Gaithershurg. MD 20K9<J. U.S.I\.
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The point of view expressed above guided researchers in many different ways and.
consequently. various finite element approaches providing complete solutions to problems
involving singularities have been developed by Hartranft and Sih (1969). Byskov ( 1970).
Pian et al. (1971). Tong et al. (1973). Atluri et at. (1975). Lin and Mar (1976) and
Bartholomew (1978). (n this paper the enriched finite element technique has been selected.
These elements. known also as global/local finite elements (Morley. 1970; Mote. 1971).
have been successfully used in the analysis of singularities (Benzley. 1974; Chen. 1985).
The major idea consists of introducing the analytic, singular part of the solution. defined
over the entire domain of the problem. and supplementing it with the regular part. con
strU\.:ted by standard (nonsingular) finite elements. Arguments behind this particular selec
tion are given further in the paper.

(n the presentation of the material. full development of the expressions detining the
singular part of the solution (and needed herein) will not be provided. for details the reader
is referred to Zwiers et al. (1982). However. for the paper to be self-contained, the major
steps leading to such expressions are outlined in the Appendix and the final results are
quoted in Section 2. The enriched finite element technique is briefly described in Sel·tion J.
and the numerical results are pn:sented in Section 4. Conclusions form the last section.
Section 5. of the paper.

2. SrECIFICATlON OF TilE PROBLEM AND NEEDED ANALYTICAL RESULTS

This paper is concerned with the analysis of the laminated composite specimen shown
in Fig. I. The composite is stretched along its longest dimension. parallel to the x'-axis. It

'I
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Fig. I. Specific,llion or the problem.
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is assumed that each lamina is an orthotropic material with the principal directions .i l
• .i=.

.i ' where .i= = x= (Fig. I). The remaining two principal axes lie in the (x'.x}) plane; the
third principal direction is parallel to the fibers and makes an angle () with the x}-axis. As
opposed to most works dealing with the problem (in fact the authors know of only two
exceptions: Zwiers et a/. (1982) and Davet and Destuynder (1986» the orientation () of the
material in each layer is arbitrary (i.e. ()I:/:- ()2)'

For the purpose of calculation and comparison it is further assumed that all layers are
formed of the same material (high modulus graphite/epoxy) the constants of which. related
to the principal directions. are

E I = E 2 = 2.1 x 10h psi

EJ == 20.0 X IOh psi

G I2 = G 2 } == G." = 0.85 X IOh psi

V!I == v" = \'}! = 0.21. (I)

This specification is not essential and assuming different materials in ditferent layers incurs
no additional difficulty as long as the position of the principal directions of orthotropy
remains as described 'Ibove. The analysis will be related to the central section of the
specimen. remote from the point of application of the load. where the three displacement
components II,. i = 1.2.3 can be assumed to depend only on Xl and .\.2 (Fig. I). This
condition is combined with the assumption f.,} = cons!.. which characterizes the amount
of stretching (Zwiers ('( CI/.. 1982). Since the problem is linear we have .Issumed I: \, = 1.0.

An asymptotic analysis based on the above assul1lptions revealed that. in general. two
dilli.:n:nt types of singularity may occur at the free edge of the interl~lce if () 1 #- - () 2 (Zwiers
1'1 ClI.• (982). As a result of this analysis one of those singularities. of the type r" (,5 < 0). is
dclined within a multiplicative constant. representing its strength. The constant itsdf
remains. however. unknown until the entire boundary value problem is solved. The second
singularity. of the log r type. emerges fully determined (i.e. including the multiplier).

Displacement lidds associated with the above singularities have been derived in Zwiers
t'( Cli. (1982). For the convenience of the reada the method of derivation is sketched in the
Appendix. It is found that the log r singularity is associated with the following fully
determined displacement Iidd:

.\

Ii,' == L {GI. Re [/'u.ZI.(In ZI.-I»)+III.lm [I',.I.(ln ZI.-I)]}
I.-I

while the r" singularity with the Iield

J

Ii; = L {AI. Re (/'i,l.Z1.+o') + 81. 1m (1',.I.Z)."')}j(1 +(5)
I. - I

(2a)

(2b)

in which the unknown const.tnt mentioned earlier is not included. All of the quantities
'Ippe'lring in eqns (2a) and (2b) arc determined as .1 result of the analysis presented in
Zwiers e( a/. (1982); 2 /. is a specified linear complex function of x 1 and x! (Fig. I). 1",./.

f. = 1.2.3 arc determined complex numbers. () as well as AI.• IJI.• GI.• 11,.. L == 1.2.3 arc
determined real numbers. which depend on stacking sequence and material properties of
the composite. Consequently eqns (2a) and (2b) should be viewed as known. real functions
of.\"' and x 2

•

In fact the functions given in eqns (2a) and (2b) arc dilTerent within each layer since
1",.1. and 2/. as well as A,.. 0t. GI • and HI. differ from layer to layer. Continuity of these
functions and of the related stresses at the interface is however guamnteed; thus eqns (2a)
and (2b) evaluated properly in each layer represent actually one continuous function.
defined over the entire domain of the problem.

The functions given in eqns (2a) and (2b) will be used within the finite element scheme
described in the next section.
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3. BASIC FEATURES OF THE Fl""ITE ELEME:-.iT TECHNIQUE USED

Consider a problem involving singularities and suppose that orders of all those singu
larities have been identified. Let the displacement field associated with the singularity 7 be
u'(x/) where x' represents a (Cartesian) coordinate system. In general we may have A
singularities. so :x = 1.2..... A. which are located in the same or different physical point of
the domain. In the particular case considered in this paper we have A = 1 in case of the
(0, -0) composite and A = 2 for the general (0\/0:) composites. In the latter case both
singularities occur at the same point located at the free edge of the interface.

With the data described above known we will follow the procedure described by
Benzley (197'+) (see also in Morley (1970). Mote (1971) and Chen (1985». Thus. the total
displacement field is represented as follows:

.\

( .k) _ '\ . •• (.k) "( .k)II,.X - L.. (.II,.X + II, .X
1~ \

(3)

where Ii' represents the regular part of the solution (having no singularity) and ('. is either
a known. if the singularity 7 is fully determined. or is an unknown displacement parameter.
if the singularity :x is determined within a multiplicative constant (the latter is a more
common situation). The reguhlr part ofeqn (3) is appro~imated by a standard finite clement
technique

"
li~(.\k) = L (p,,(xk)d,1

/·1
(4)

with (/',1 being the appro~imatingfunctions and a" rdated displacement parameters; 11 is the
total numncr of nodal points,

Since the singular p.trt of elln (3) is delined over the entire domain of the problem, it
is dear that el,1 constitute only a part of notlal displm;emellts: the remaining part comes
from Ii;. This is inconvenient when the kinematic boundary conditions arc to be imposed.
To avoid this inconvenielll.;e the interpolant of Ii; obtained by means of the approximating
functions cP'l has been subtracted from the singuhtr part of the appro~imation and addetl
to the regular part of it. Thus

where

.\ n

= L ('Ill; + L (/,,,tI,,
'1 I 1- t

n

1 " ".I. 'I
II, = u, - L.. '1"1/11"

/ HI

.\

tI'l = d" + L c1 Ii,i.
•• I

(5)

(6a)

(6b)

Now,,; vanishes at the nodal points and ti,l represent total nod..d displacements. Since for
any given Ii; evaluation of u; as defined in eqn (6..1) is straightforward, use ofeqn (5) rather
than eqns (3) and (4) is simple and removes the inconvenience associ.tted with displacement
boundary conditions (Benzley. 1974).

With the above e~planation the rest of the formulation follows all of the steps of the
usual displacement formulation. To be concise we will delineate them using matrix notation
typical for this formulation. Thus the displacement field of eqn (5) is written on the clement
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level in the following form :

u :::;: [N'. N'] {d'} :::;: Ndd.t

where

79

(7)

(8a)

(8b)

(8c)

r llr ...
~]N':::;: ll~ II~ ... ~

11\
,

111llj

d':::;: [dr.d~, ,d~IT, d,r:::;: [c/ II.d2l,dJll

d' :::;: (c1'C~, c,dT
.

If the operator defining i: of cqn (A4) in the Appendix is dcnotcd by Lone gcts

i:::;: I.u:::;: I.Nd:::;: Bd:::;: [B', B') {::}

where

B' :::;: LN'

B':::;: LN'.

(8d)

(8e)

(8f)

(9)

(IDa)

(lOb)

Equation (9) docs not include I:u which renects the fact that the problem is indcpendent of
Xl and implics that I:Jj :::;: constant (we assume l:Jj :::;: I).

To obtuin the finite element equations the principle of virtual work is used. For a two
dimensional domain in the absence of the external forces the principle has the following
form:

f JtTtI dA :::;: 0
.t

(II)

where tI is the stress tcnsor and A represents the area of the domain. In view of the
assumption l:.\) :::;: I, we have c5c)) :::;: 0 thus only i undergo variation, but the stresses tI

depend on both the five strain components included in i ofeqn (9) and l:Jj :::;: I. Considering
this fact along with eqn (9) the following expression is obtained from eqn (II) :

(12)

where Ae is the area of element e. C II is the 5 x 5 submatrix of the 6 x 6 constitutive matrix
C. corresponding to the five strain components included in vector i and C I ~ is the 5 x I
submatrilt of C which corresponds to i and f.H' Equation (12) clearly shows that the finite



elt:ment equations

Kd = -f

can be obtained by assembling K and f from the following element matrices:

Considering egn (9) one can see that K< and f< arc of the following form:

( 13)

( l-la)

( l-lb)

[
K"

K<-
- (K,,)T K"JK"

( 1541)

( ISh)

where r corresponds to the regular and .f to the singular terms. Since degrees of freedom d'
arc common to all of the elements the usually banded character of the total stilfness matrix
K is destroyed. However. if the parameters d' arc placed at the end of the global Vl.:ctor of
degrees of freedom. eqn (13) has the following structun::

where d' is the total vector of the "regular" degrees of freedom. K I I. K I~' K ~ I = K: 1 and
1\11 arc obtaincd as a result of asscmbly of K". K". K" = (K")' and K" of eqn (15a).
respectively. In this case K II is exactly the same as for regular linite elements. Thus solving
lirst equations related to d' and then those related to d' we have

(1641)

( 16h)

which takes full advantage of the banded ness of K II and requires relatively little ellort
related to formulation and solution of eqn (16b). This is particularly true in our case since
eqn (16b) represents a system of only two equations for ('I and ('1. if ('1 is considered
unknown (sec the next section). or only one equation for ('I if ('1 = I.

At this point we would like to comment on the seb:tion of the particular linite clement
approach just described. The approach has been selel:h:d based mainly on its extreme
compatibility with the regular displacement versions of the tinite element formulation. This
c!e'lrly follows from eqns (15) and (16) in which K". f' (and thus K I1 and f l ) could be
obtained by the existing linite clement codes. The additional calculations related to K'" K"
and f' require only evaluation of 8, and corresponding integrals (see eqn (14a». In view of
the form of the singular lields given in eqns (2) and (5) (and in the Appendix) this task
docs not constitute any problem. Also. as explained in the preceding paragmph. the solution
of the resulting equations tukes full adv.mtage of the handed charucter of the stilfness
matrix corresponding to the regular terms of the approximation.

There \vere also other reasons behind the selection of the enriched finite clement
technique herein. One of them was the intention to test a different approach. which to the
best of our knowledge. has not been used for this class of problems. This is important.
considering that the hybrid stress approach (Wang and Yuan. 1983). or the eigenfunction
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expansion (Wang and Choi. 1982a. b). seem to require considerably more effort. Another
reason was the ease with which contributions of the singular terms to the stress field can
be isolated not only in the neighborhood of the singular point but within the entire domain.

~. ~UMERICAL RESULTS

The numerical results have been obtained for three different composite laminates:
H5 -45) laminate. (90.15 ) laminate and (-15 /75 ) laminate. Each layer. in all of
these cases. had the same material properties given in eqn (I). To limit the volume of the
results only those stress components which are continuous between the layers are evalu.tted
at the interface (i.e. a ~~. a ~,. IT ~ I). they are responsible for delamination. Corresponding
strength of both r" and log r contributions (stress intensity l~lctors) are also evaluated and
tabulated. They are defined respectively as cocfficients 5;;, and 5~,. ij = 22.23.21. which
appcar in the following expansion of the interlaminar stresses (note that Xl = r in this case):

a,,(r) = 5;', (r)" +5;, log r + (regular terms). ( 17)

In view of the above equation it is dear that the total stress. along with its'" and log r
contributions uniquely delined the regular part of the stress lield. Because of that and
because the cmphasis is put in this paper on singularities the regular term seems to be the
least important and. for clarity. has not been plotted in the following ligures. An idea as to
its magnitude can be obtained by comparing the total stress with both of the singular parts
(and useofeqn (17)).

To formulate finite element equations the eigenvalue prohlem defined in eqn (A 16) of
thl.: Appendix has to he solwd lirst. The rl.:sulting eigenvalul.: (): < 0 «) I = O. sec ApPl.:ndi.\)
allli COITl.:sponding (normali/l.:d) l.:igl.:nwctor (I.: delinl.: the second singular term given in eqn
(2h). In addition to that. for (90 /15 ) :Illd (-15/75) laminates. (II has to he extracted
from eqn (A21). Since (IJ is uniquely determined (sec Appendix and Zwiers ('( al. (19X2)).
in elln 0) onl.: slwuld take 1', = I. Ilowever. to have some additional verilication of the
calculations. we let ('1 to be unknown and to he calculated just like ('~. Thus the value
('I ;:; 1.0 indicates that the procedure is correct.

All of the results which follow have heen ohtained with lJ-node Lagr:tnge elements and
the mesh shown on Fig. 2. The selection of the mcsh was to roughly preserve the total
numher of degrees of freedom comparing with the models used to ohtain cxisting reference
results in Wang and Yuan (llJX)).

While interpreting the plots representing the stress distribution along the interface one
has to keep in mind that the first point at which stresses were evaluated. was at the distance

I

0.5

--- 9-"ode Lagr,snge elements
,

,

2 ,r

Fig. ::!. Mesh used in the calculations.

X I
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Table l. Characteristics of r" singularity for (45 (-45 ) com
posite «> = O.0255757)t

Parameter

c,
S'
S ·,

"S ,'
, I

Present
results

-15.248
-7.584
16.551
0.000

Wang and Choi (1982a. b)

- 7.535
16,443
0.000

t No log' singularity in this case (Zwiers e( al.. (982).

x = 0.001003 in. from the free edge. Thus, distribution of the stresses in the immediate
vicinity of the singular point. should be qualitatively assessed based on plotted contributions
of the l and/or log r terms.

Furthermore. all of the stress components have been evaluated directly along the
interface and resulting values for the adjacent layers have been subsequently averaged. This
is different than the approach frequently used in the finite elements analysis of the problem
in which to smooth out the stress distribution along the interface. an extrapolation technique
based on internal points of the clement is used prior to averaging (Wang and Stango, 1983).
The approach adopted in this paper was to emphasize that when both possible singularities
arc included the stress distribution is sutliciently good without extrapolation. When some
of the existing singularities are removed, though. this is not necessarily the case. Thus
importance of both of the singular terms is additionally demonstrated that way.

Various solutions exist for the (45'/ -45 ') composite (Pipes and Pagano. 1970;
Herakovich ('( al.. 1976; Wang and Crossman, 1977; Wang and Choi. 198241. b; Wang and
Yuan. 191U). this case has been therefore selected here as a kind of benchmark problem.
The results presented in Table I and on Fig. 3 show that the approach adopted here is
equally accurate as far as stress disribution and pammeters specifying singularities arc
concerned. Although the results presented here have been obtained for the discretization
shown 011 Fig. 2, cakulations wen: also madc for coarser meshes and the corresponding
results were only slightly worse. The errors were within a few percent.

The second problem considered here was the (90 '/15 ') composite. As can be seen in
Zwiers e( al. (1982). for this orientation a strong log r singularity should exist (see Fig. 5
in Zwiers el al. (llJX2)). Three difl"crent groups of results were obtained by including either

0.5

X/b

,
1.0

Fig. 3. Stress distributions for (45 /45 ) composite laminate.



Logarithmic term in the free edge stress singularity of composite laminates 113

one or both singular terms with the corresponding unknown coefficients. They are presented
in Table 2 and on Figs 4-6. The stresses presented in the figures illustrate their distribution
along the interface.

The value CI = 1.038 in Table 2 seem to be close enough to the theoretical value
CI = 1.0 (see preceding sections) to validate the adopted approach and algorithm. To reach
this conclusion one has to take into account the approximate character of the finite element
method as well as the complex nature of the interaction between the two singularities in
this energy based method. This statement is supported by an increase in C I to 1.092 when
the "j singularity is removed from the model. Similarly, the change of about IO~iO is recorded
in parameters specifying the "j singularity when log, terms are removed. From Table 2 and
Figs 4-6 we see that the logarithmic singularity has its major effect on the stresses (113' This
influence is so strong that the total value and the logarithmic part of (113 almost coincide
as the singular point is approached (Fig. 5(a». However, Fig. 5(a) also reveals that the
interaction of the two singularities is more complex than that. It is seen that while r'; in (11)

approaches 00 the log, term approaches - 00. Since the ,'; singularity is stronger than log,.
in the extremely small neighborhood of the singular point the sign of (1n must be positive
despite the impression given by Fig. 5(a). In addition to that the r'; term has a relatively
large influence on the stress components (111 and (11~ within the element including the
singularity point. This can be deduced by comparing the results obtained without the l
term. presented in Figs 4(c) and 6(c), with those in Figs 4(41) and 6(41), respectively, where
both singularities are included.

In addition to Zwiers etal. (19X2). the logarithmic singularity has heen also discussed
in Davet and Destuynder (1986). The latter paper deals only with a special case in which
01 = OJ +90' and. in this context. seems to suggest that no other (than logarithmic) singu
larity exists. On the other hand solution of the eigenvalue prohlem deli ned hy eqn (A 16)
gives /) ~ = - 0.0302747 which clearly shows that the singularity of the type ,", c) < 0 is also
possihle. To provide some addition.tl insight into this case we consider as the third example
the ( - 15 '/75 ') composite. The results arc included in Tahle 3 and on Figs 7 9.

There arc few interesting aspects of these results. First, contrary to the implication of
Davet and Destuynder (1986). the ," singularity is present in this prohlem. The second
aspect is that. relative to the log, term. its signilicance in the overall picture is smaller than
in the case of the (90 'j 15 ') composite. This is rel1ected in a dramatic change of par.tmeters
specifying the ," singular term when the log, part is excluded from the model. Another
interesting observation is that, as in the case of the (90 'j 15') composite. the logarithmic
terms contribute mainly to (11.1 (see Davet and Destuynder (1986» of the three interface
stress components. As can be seen by comparing Figs 5(41) and 8(41). however. this time the
," and log, contributions to (11.1 are complementary rather than competing. they both
approach - 00. As far as (121 and (113 is concerned. examination of Figs 7(a)-(c) and 9(a)
(c) reveals. that erroneous distribution of those stress components in the elements adjacent
to the singular point occurs no maller which of the singularities is excluded from the model;
both of them arc therefore essential. Finally, the resulting values of ('I arc close enough to
the theoretical value (', = 1.00 to say that the self-imposed check of the model and of the
algorithm is passed.

Table 2. Characteristics of singularities for (90; I5) composite
(,l = -0.0328(41)

I'arameter
1" and log r

included

1.038
- 31.225

4.301
0.271

-0.438
0.000
0.714
0.000

Only'"
includeu

-34.424
4.742
0.299

-0.438

Only log r
included

1.0")2

0.000
0.751
0.000
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Fig. 4. lnlerlaminar normal stresses 11" for (90,15 I eomp,'sile Iaminale: (al r'> and log r induded;

(h) r' induded only; (e) log r indlllkd only.
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Table 3. Characteristics of singularities for (- 15 75) composite
(,) = -0.03(2747)

r" and log r Only r" Only log r
Parameter included included included

C, 1.030 0.960
C: 14.241 2.369
S' -I.W<) -0.332
S' -1.520 -0.253:'S:, -0.179 -0.0297

5'" 0.000 0.000
5':; 0.645 0.601
5';, 0.000 0.000

5. CONCLUSIONS

The results presented in this paper clearly show that incomplete theoretical information
about the number and/or the type of the singularities involved in'l problem may significantly
distort the picture emerging from the calculations. Such incompleteness of the information
has been modeled here by intentionally retaining in the analysis only one of the two
singularities known to be possible in the considered cases. It is shown that in the direct
evaluation of stresses along the interface (compare Wang .lI1d Stango (1983)) the inac
curacies resulting from an incomplete repescntation of singularities may signilicantly change
the corresponding stress distributions cvcn away from thc singular point. Such incom
pkteness allixts also various paramcters rcpresenting strength of the retained singularity.
In some cases, exemplified here by the (-15 '/75) composite analyzed with r') as a sole
singular term, thesc parametcrs can be several times dillerent from those obtained when all
of the singularities of the problcm are included. Thesc ellects arc important considering
that accurate information anout singularities would enable one to assess if a possibility of
delamill;ltion exists.

The qualitative side of the anove results was, to some extent, expected. Quantitatively,
however, the numbers obtained show rather dramatically how important it is to combine
a careful thellretic.d analysis of the singularities involved with numerical calculations. For
inst'lnce, despite the fact that the log r singularity is weaker than the r" singularity, and
might be expected to playa minor role as 1~lr as the results are concerned, its omission in
the analysis of the ( - 15 /90 ) laminate changes the strength of the r') terms about six times.
fn this context the discovery of the log r singularity has rather profound significance.

An additional conclusion resulting from the conducted analysis is that, in terms of
accuracy and performance, the enriched finite element technique parallels other powerful
methods, including the hybrid stress method used for similar calculations in Wang and
Choi «(9X2a, b) and Wang and Yuan (1983) .

.·lckl/m"/ct!'I<'I//Cl/1 .- We wish 10 thank Professor T. C. T. Ting for suggesting the topic for hclpful discussions and
for providing codes solving the required eigenvalue problems.
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APPENDIX

[)eriv.lliun of the displacement Iield relaled to r" and log r singularities will be outlined here.
Relerring tu the coordinale system shown on Fig. I and recalling independence of the stress and strains on

x I (sec Section 1) lhe fllllowing e4uilibrium e4uations arc dedul:ed for the present problem:

They arc comhined with the kinemalic anti constitutive e4ualions

r.'1 = 1(11,.,+11,.,)
ai' = ("'IIt,ell

(AI)

(A1)

(A3)

10 form the complete !let of governing equations.
In the tinile element implementation of the problem the components of the strain and stress lensors will form

the following vectors:

11"

r}11::
r. ..

":'.1 {i} (M)a= 1= • i= r.B .
(/11 r.J.\

f. l l

rr I ~

r.,:
t1 11
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The ClImpunent &" in the stram vl'ClOr c has been- isolated because of the independc",,;e of thc unknown
displa.:ement field of x' ; we assumc f:" = I to sp..-..:ify thc intensity of thc load.

With notation (A-I) the following matrix relationship is equivalent to eqn (A3):

tI = Cc

whcre the 6 x 6 matri.\ C can bc related to the components C"" of the material tensor of eqn (A3).
Solution to the guverning equations is sought in the following form (Zwiers el a/.. 1982):

Z=X'+px~

(A5)

(A6a)

(A6b)

whcre ,i" is Krone.:ker"s delta. p and l'~ are constants to be dctermined and f is a set of linearly indcpcndcnt
functions. Substitution of the assumed displacement field into the governing equations. eqns (A I )-(A3). shows
that /I, of cqn (A6a) may be a solution if

(A7)

for every x. where D" is indcpcndent of:x

Thus. the .:onslant (I of eqn (A6b) has to be selected Sll lhal

det (0,,) = O. (/\'l)

fnr any ",lIue f' satisfying elfn (A'l). the corresponding eigenvcclor I': .:an be obtained from elfn (A7). This
shows thaI,.; arc the same for all x·s. '" the supcr,,:ript :x can be omitted. The related solution ddined within to
an unsIX·.:i1i.:d yet fun.:lions l'(Z). can be suosequently ootained from elfn (A6a).

Considering eqns (AX) and (/\'l) one can sec that "In (/\9) is of si.\lh order with respect 10 f'. there an:
Iht·rd·or.: six solutions for (I. Ilowev.:r. one can show (Zwiers ,'1 II/.. 191'2). thaI those arc form.:d of thr.:e p'lirs of
t'lllllpkx t·onjugat.: v;llu.:s (I" fi , . f. 1.2.3 (the overoar indicates the eomple.\ conjugate). Consclfuently. in view
of .:qn lAX) th.....e ;arc also three pairs of related eigenvectors ,.".1\/. (n any case. for any funclion f'. the si\
t'lgenvalues allli .:orr,:spollliing eigenvech1rs result in six solutions which because of the linearity of the proolcm.
t'an he lin.:arly comhin.:d 10 yield a general solution.

Sin" dek-..:ting possiolc singularili.:s is here of particular interest. the following fUIll:tionsr arc assum.:d:

(AIO)

For this,ele.:lion, Ih.: slresses resulting from elfns (A2) and (/\3) have the form

(AlIa)

(Allo)

wll1.:h results in a singlilarity at x I = x' = 0 if, for the same :x, .5, < O. As explained in the previous paragraph
.:omhinalion of the above e.\pressions related 10 ditrerent values of f',. (and til) gives

I

/I, = I ~ (Air'"Z: ""+lJiL'"J:""), (1 +,5,)+(5"/:,,x'
I '- - I

while the related slress .:omponents arc expressed .IS follows:

,
n" = I I (,-/ir",Z';:+ Hi.f",.J;:) + C,,\l/:\l.

, 1.-1

(A 12)

(1\ 13)

Everything t1cscrihetl so rar has to be done for each laycr of the composite separately (sin.:e eljn (A3) is
Jilrercnt in cad! laycr) hut wilh Ihe Sillne f'. The resulting two functions. cach having the form given in eljns
(1\12) and (ALl). h;lve 10 he now cOl11oincd 10 meet six inlerfaec compatibility conditions (three for stresscs and
three for displ;leemenls) and six free edge stress conditions (three for eil.:h lay·er). The resulting 12 elfu.llions h;lve
the lilllowing m'llhem;lti.:al stru.:ture:

(/\ 1-1)

in whid! 'I' comhines .six constanls Ai. Hi.• L = 1.2.3 for each layer. b results from the presence of the term
involving r." in eqns (A 12) and (A 1.1). and r is the radius in the pul<lr coordin<lte system (Fig. I). The presence
of an arbitrary value of r in elfn (/\ 1-1) indi.:ales that to satisfy eqn (A I~). onc of the (5;s say (',. must be zero and

M,(O)q, = r."b

'I,(,i,)'I. = 0, :x = 2.3....

(AI5)

(Alii)
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The first of the above equations gives a particular solution. while from the second equation transpires that for
the problem to have a singularity the equation

(AI7)

must have a solution J, the real part of which is Re J, < O. This negative value (or values) of J, along with
cl'rresponding eigenvectors q,. obtained from eqn (AI6). define the form of the singular contribution to the
displacementfidd given in eqn (AI2). In general both J, (the one with Re J, < 0) and corresponding A;. 8i for
both layers may be comple.,. Results reported by Zwiers e( al. (1982) seems to indicate. however. that there e:l.ists
only a single real negative root ofeqn (AI7) which we denote J, = ,I and which represents the'" singularity. In
this case. the real solution can be obtained by combining the real and imaginary parts of I',Z:/' ''''. Thus

,
II,' = "5" :A ( Re (r',( Z l'" )+ B( 1m (I'd Z l "'I) "( I + J)

L~1 -
(AI8)

where A, and 81. (as well as ,l) are now real. All of those numbers can be obtained by solving the eigenvalue
prl,blem similar to that given in eqn (AI6) which can be readily obtained according to the procedure that has
been just described assuming II,' ofeqn (A 18) for the displacement field (Zwiers e( al.. 1982). As in any eigenvector
problem the eigenvector q, is defined within a multiplicative constant and. thus. so is the displacment lield II,'.

The logarithmic singularity comes about because of the difficulties with the satisfaction of Eqn (AI5). It
appears that the matri, M,(O) is always singular and a solution ofeqn (A 15) e~ists only when the vecll'r b belongs
III the space spanned by linearly independent columns of M,(O). Such a special situation happens to occur only
undcr sf'l.'Cial circumstances. namely for (OJ -til laminatcs and a particular family (1/,10,) composit,·s (Zwiers "(
al.. 1982). In general eqn (AI5) cannot be satisfied.

The ahllVe situation indicates that. in general. for ,I, = 0 the solution cannot have the form given in eqn
(/\10) and in the corresponding eqn (AI2), T" rectify the problem. a dilli:rent sllluti"11 fllr ,I, ~ (J has been
"htained in Zwiers e( al. (1982) by means of the following technique:

(AI'I)

()ilkrentiali,'n prescnt in the ahllve equatilln is performed assuming that "', ami II, depend on ,I, and leads '0
lhe fllllllwing result:

II,' L ["', Re (t'd Z, Illg Z,) ,~Il, 1m (I'd Z, log Z,)I + L [..I) Re (t'uZ,1 + II) 1m (I'" Z,)[I-I: ",l,,\"
1 - I 1.- I

(:\20)

where ..I:. U:. I. = 1.2. J is a sct of new constants. Thus the solution given hy el(n (A20) is. in each layer. dclined
in terms of 12 eonstanls A,.• 8,. A).• 0).• l. = 1.2.3. They have 10 be determined from the same interface and
hllllndary ellnditions which previously led to el(n (A 15), This time. the resulting system of equations has the
rolillwing form:

!\I(O)q, = 0

M' (O)q, + !\1(O)q: = /: lIb

(A2Ia)

(A2Ih)

where M(O) and q, is the same as in el(n (AI5) while M '(0) is a new 12 x 12 matrix and II: contains constants
./) and lJi.

In view of elJn (A2() it is dear that only the wctor q, of el(ns (A2Ia) and (A21 b) is rdated to the logarithmic
term log Z,. The underlined part of elJn (A20) is linear. therefore it can be well represented by the regular linite
clemen I sh:lpe functions and omilled in the singular 10g:lrithmic displacement lidd. As shown in Zwiers <'I al.
(191\2) the vector q, that defines this singular tield is unilJudy determined from elJns (A21). and so is the lield
ilself. If II, = 0 no logarithmic singularity e~ists.


