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Abstract —Composite laminates under axial stretching are analyzed by means of the eariched finite
elements. The # singularity and log r singularity are included to describe the edge effects. It is
concluded that, in general. they are both necessary if reliable information about the strength of
those singularities is to be obtained.

1. INTRODUCTION

Recent investigations (Ting and Chou. 1981 ; Zwiers ¢r al., 1982), have shown that, with
the exception of the (#/ — @) composite and a special 6/0° family of composites, the log-
arithmic stress singularity at the free edge of composite laminates is present irrespective off
the conditions on the boundary remote from the singular point. This is in contrast with the
more common r* (—1 < § < 0) stress singularity (Wang and Choi. 1982a,b; Zwicrs ¢t al.,
1982), which may cxist at the free edge of any laminate, but the actual presence of which
cannot be ascertained until the complete boundiry value problem is solved.

Atthough the presence of the logarithmie singularity may, of course, be suflicient to
cause delamination at the free edge of the composite, the role of the possible * singularity
should not be ignored. The £ singularity is much stronger than the togarithmic singularity
and, it present, can be primarily responsible for the onset of delamination. It is therefore
worthwhile to examine relative importance of the two singularitics, their interaction and
their influence on the stress distribution. This task is however beyond the reach of the
analytic approach. The finite clement technique incorporating analytical results of the
asymptotic analysis is used in this paper to gain some insight into the problem.

It has been found in the past that as far as the stress distribution in problems involving
singularities is concerned even standard techniques, such as properly processed usual (non-
singular) finite elements, have high predicting capabilitics (Rybicki, 1971; Herakovich,
1976 ; Herakovich er of., 1976 Wang and Crossman, 1977) (as do other methods which
can be found in Pipes and Paguno (1970). Gallagher (1971), Pagano (1974, 1978), Tang
(1975), Tang and Levy (1975), Altus et af. (1980), Spilker and Chou (1980), Ting and Chou
(1981), Wang and Dickson (1978), Wang und Choi (19824, b) and Wung and Yuan (1983)).
Only in the immediate vicinity of the singulur point, the sotution obtained in such a standard
wily is not accurate and its convergence is generally very slow (Tong and Pian, 1973). The
stresses around and at the singular point obtained by means of standard finite element
techniques are linite, although the stress gradients are usually high indicating the presence
of a singularity. However, once analytical methods, such as usymptotic techniques, establish
the possible existence and order of the singularity, the numerical techniques can incorporate
the analytical results to provide complete and accurate information characterizing the
solution. In addition to the stress distribution away from the singular point, they can then
give accurate values of the strength of the existing singularities, i.c. the stress intensity
factors. In fact, the stress intensity factors may be even more important than the stress
distribution away from the singular point since, in most cascs. intensity of the stresses at
the singular point may be directly linked to the initiation of delamination. Thus, the
calculation of the stress intensity factors is stressed herein.
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The point of view expressed above guided researchers in many different ways and.
consequently. various finite element approaches providing complete solutions to problems
involving singularities have been developed by Hartranft and Sih (1969), Byskov (1970).
Pian et al. (1971). Tong er af. (1973). Atluri et al. (1973). Lin and Mar (1976) and
Bartholomew (1978). In this paper the enriched finite element technique has been selected.
These elements. known also as global/local finite elements (Morley. 1970: Mote. 1971).
have been successfully used in the analysis of singularities (Benzley. 1974 Chen. 1985).
The major idea consists of introducing the analytic, singular part of the solution. defined
over the entire domain of the problem, and supplementing it with the regular part. con-
structed by standard (nonsingular) finite elements. Arguments behind this particular selec-
tion are given further in the paper.

In the presentation of the material, full development of the expressions defining the
singular part of the solution (and needed herein) will not be provided. for details the reader
is referred to Zwiers er al. (1982). However, for the paper to be self-contained. the major
steps leading to such expressions are outlined in the Appendix and the final results are
quoted in Section 2. The enriched finite element technique is briefly described in Section 3,
and the numerical results are presented in Section 4. Conclusions form the last section,

Section 5. of the paper.

2. SPECIFICATION OF THE PROBLEM AND NEEDED ANALYTICAL RESULTS

This paper is concerned with the analysis of the laminated composite specimen shown
in Fig. 1. The composite is stretched along its longest dimension, parallel to the v-axis. It

mat. 1, 9,

Fig. L. Specification of the problem.
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is assumed that each lamina is an orthotropic material with the principal directions ', -,
X" where £° = x° (Fig. 1). The remaining two principal axes lie in the (x', x") plane: the
third principal direction is parallel to the fibers and makes an angle # with the x'-axis. As
opposed to most works dealing with the problem (in fact the authors know of only two
exceptions : Zwiers et al. (1982) and Davet and Destuynder (1986)) the orientation ¢ of the
material in each layer is arbitrary (i.e. 8, # —0.).

For the purpose of calculation and comparison it is further assumed that all layers are
formed of the same material (high modulus graphite/epoxy) the constants of which, related
to the principal directions, are

1

E, = E» = 2.1x 10 psi
E; =20.0x 10° psi
Gl‘.' = G:J = G_” = 0.85 x 10° psi

vy = vy = vy = 021 (hH

This specification is not essential and assuming different materials in difterent layers incurs
no additional difficulty as long as the position of the principal directions of orthotropy
remains as described above. The analysis will be related to the central section of the
specimen, remote from the point of application of the load. where the three displacement
components u,, i =1,2,3 can be assumed to depend only on x!' and x* (Fig. 1). This
condition is combined with the assumption £,, = const., which characterizes the amount
of stretching (Zwiers ¢f al.. 1982). Since the problem is lincar we have assumed &, = 1.0

An asymptotic analysis based on the above assumptions revealed that, in general, two
different types of singularity may occur at the free edge of the interface il 0, # —0, (Zwicrs
et al., 1982). As a result of this analysis one of those singularitics, of the type 2 (3 < 0). 1s
defined within a multiplicative constant, representing its strength. The constant itsell
remains, however, unknown until the entire boundary value problem is solved. The second
singularity, of the log r type, emerges fully determined (i.c. including the multiplier).

Displacement ficlds associated with the above singularities have been derived in Zwicers
et al. (1982). For the convenience of the reader the method of derivation is sketched in the
Appendix. It is found that the log r singularity is associated with the following fully
determined displacement field :

3

i =Y {G, Re [0, Z,(In Z, = D]+ H, Im [r,,(In Z, —1)]} (2u)

L-1t

while the r* singularity with the ficld

3
i =Y 1A, Re (0 Zy"")y+ B Im (0, Z1"°) ) /(1 +0) (2b)

L=

in which the unknown constant mentioned earlier is not included. All of the quantitics
appearing in eqns (2a) and (2b) are determined as a result of the analysis presented in
Zwicrs ¢t al. (1982); Z, is a specified lincar complex function of x' and x* (Fig. 1), r,,.
L =1,2.3 are determined complex numbers, & as well as A, 8,. G, H,, L = 1,23 arc
determined real numbers, which depend on stacking sequence and material properties of
the composite. Consequently eqns (2a) and (2b) should be viewed as known, real functions
of x'and x°.
In fact the functions given in eqns (2a) and (2b) are different within cach layer since

v, and Z, as well as A, B,. G, and H, differ from layer to layer. Continuity of these
furictions and of the related stresses at the interface is however guaranteed ; thus eqns (2a)
and (2b) evaluated properly in each layer represent actually one continuous function,
defined over the entirc domain of the problem.

The functions given in eqns (2a) and (2b) will be used within the finite element scheme
described in the next section.
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3. BASIC FEATURES OF THE FINITE ELEMENT TECHNIQUE USED

Consider a problem involving singularities and suppose that orders of all those singu-
larities have been identified. Let the displacement field associated with the singularity x be
@{x’) where x' represents a (Cartesian) coordinate svstem. In general we may have A
singularities, sox = 1.2,.. ., A, which are focated in the same or different physical point of
the domain. In the particular case considered in this paper we have A = 1 in case of the
(8; — ) composite and A = 2 for the general (#,/0.) composites. In the latter case both
singularities occur at the same point located at the free edge of the interface.

With the data described above known we will follow the procedure described by
Benzley (1974) (see also in Morley (1970), Mote (1971} and Chen (1985)). Thus, the total
displacement field is represented as follows:

A
Wy =Y cd (F)+ (") )

=1

where " represents the regular part of the solution (having no singularity) and ¢, is either
a known, if the singularity 2 is fully determined. or is an unknown displacement parameter,
if the singularity x is determined within a multiplicative constant (the latter is a more
common situation). The regular part of egn (3) is approximated by a standard finite element
technique

"

() =Y (), (4)

1=t

with ¢, being the approximating functions and d, related displacement parameters ; #is the
total number of nodal points,

Since the singular part of eyn (3) is defined over the entire domain of the problem, it
is clear that d; constitute only a part of nodal displacements : the remaining part comes
from 4. This is inconvenient when the kinemaltic boundary conditions are to be imposced.
To avoid this inconvenience the interpolant of i) obtained by means of the approximating
functions ¢, has been subtracted from the singular part of the approximation and added
to the regular part of it. Thus

A A " " A
u, = Z cJif i = Z :',(ﬁ,"—— Z c[),,ti,’})-i— Z by <¢7,,+ Z (',:1,’,)
x- | b HER s i

1 (1

A #
= Z o+ Z hyd, {5)
FEE F- 1
where
u =1 - Z Pty {6a)
o
) A
dy=di+ Y e, (6b)
-t

Now 1 vanishes at the nodal points and d; represent total nodal displacements. Since for
any given &) evaluation of «f as defined in egn (6a) is straightforward, use of eqn (5) rather
than eqns (3) and (4) is simplc and removes the inconvenicnce associated with displacement
boundary conditions (Benziey, 1974).

With the above explanation the rest of the formulation follows all of the steps of the
usual displacement formulation. To be concise we will delincate them using matrix notation
typical for this formulation. Thus the displacement field of eqn (3) is written on the element
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level in the following form:

di‘

u=[N.N { d,} =Nd %)
where
u=[u ]’ (8a)
N'=[N1.N2,N3....,N,|] (Sb)
¢y 0 0

Ni=10 ¢y 0| ou=adulx'.x) (8¢)

Tl owio ... )
Ne=lul ui ... b (8d)

Lad wi L W
d’ = [dft dg‘ e .d:]T. dlr = [dll‘ dZI' d}ll (86)
d' = [Cl.('z-.....(',\lr. (8(.)

If the operator defining € of eqn (A4) in the Appendix is denoted by L one gets

£=1Lu=LNd=Bd = [B. B {:,} &)

where
B = LN (10a)
B = LN, (10b)

Equation (9) does not include ¢4, which reflects the fuct that the problem is independent of
x* and implies that &;, = constant (we assume £,; = 1).

To obtain the finite clement equations the principle of virtual work is used. For a two-
dimensionual domain in the absence of the external forces the principle has the following
form:

fda"adA=0 an
A

where o is the stress tensor and 4 represents the area of the domain. In view of the
assumption £, = 1, we have de¢;; = 0 thus only £ undergo variation, but the stresses o
depend on both the five strain components included in £ of eqn (9) and ¢;; = {. Considering
this fact along with eqn (9) the following expression is obtained from eqn (11):

Zéd‘[(J‘ B'C,,B dA)d-kj B'C,, dA] =0 (12)
< 4 KL

where A° is the area of element e, C,, is the 5 x § submatrix of the 6 x 6 constitutive matrix
C. corresponding to the five strain components included in vector € and C,, is the 5x |
submatrix of C which corresponds to £ and &,;. Equation (12) clearly shows that the finite
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element equations

can be obtained by assembling K and f from the following element matrices:
Kc = J’ BTC”B d." (\41&)
4
fe =J B'C,, d. (14b)
A4

Considering eqn (9) one can sce that K¢ and £ are of the following form:

e K™ K~ -
K = [(K")r I\J (15a)

L
f ‘{r} (15b)

where r corresponds to the regular and s to the singular terms. Since degrees of freedom d°
are common to all of the elements the usually banded character of the total stiffness matrix
K is destroyed. However, if the parameters d are placed at the end of the global vector of
degrees of freedom, eqn (13) has the following structure:

[ e - e

Ko Kol lof T, (o
where d is the total vector of the “regutar™ degrees of Treedom, K, K, K, = Kb, and
K.. arc obtained as a result of assembly of K7, K7, KV = (K™)" and K» of eqn (15a),
respectively. [n this case Ky is exactly the same as for regular finite elements. Thus solving
first cquations rekited to & and then those related to d we hawve

d, zl\'”l(fl—Kl:d') (]6“)
¢ = (K, —Ky K 'K (L -Ky 'K f) (16b)

which takes full advantage of the bandedness of K, und requires refatively little effort
related to formulation and solution of egn (16b). This is purticularly true in our case sinee
eqn (16b) represents a system of only two equations for ¢' and ¢, if ¢* is considered
unknown (see the next section), or only one equation for ¢! i ¢ = 1,

At this point we would like to comment on the selection of the particular finite clement
approach just described. The approach has been selected based mainly on its extreme
compatibility with the regular displacement versions of the tinite clement formulation, This
clearly follows from cyns (15) and (16) in which K7, " (and thus K; and f}) could be
obtained by the existing finite clement codes. The additional calculations related to K™, K™
and ° require only evaluation of B, and corresponding integrals (see eqn (14a)). In view of
the form of the singular ficlds given in eqns (2) and (35) (and in the Appendix) this task
does not constitute any problem. Also, as expliined in the preceding paragraph. the solution
of the resulting equations takes full advantage of the banded character of the stiffness
matrix corresponding to the regular terms of the approximation.

There were also other reasons behind the selection of the enriched finite element
technique hercin. One of them was the intention to test a different approach. which to the
best of our knowledge, has not been used for this class of problems. This is important,
considering that the hybrid stress approach (Wang and Yuan, 1983). or the cigenfunction
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expansion (Wang and Choi. 1982a, b). seem to require considerably more effort. Another
reason was the ease with which contributions of the singular terms to the stress field can
be isolated not only in the neighborhood of the singular point but within the entire domain.

4. NUMERICAL RESULTS

The numerical results have been obtained for three different composite luminates:
(43 . —45) laminate, (90 15 ) laminate and (=15 /75 ) laminate. Each layer. in all of
these cases. had the sume material properties given in eqn (1). To limit the volume of the
results only those stress components which are continuous between the layers are evaluated
at the interface (i.e. 015, 011 02¢), they are responsible for delumination. Corresponding
strength of both r” and log r contributions (stress intensity tactors) are also evaluated and
tabulated. They are defined respectively as coefficients S7, and S/, ij = 22.23.21. which
appear in the following expansion of the interlaminar stresses (note that x' = rin this case) :

0,(r) = S)(r)"+S!, log r+ (regular terms). (an

In view of the above equation it is clear that the total stress, along with its #’ and log r
contributions uniquely defined the regular part of the stress ficld. Because of that and
because the emphasis is put in this paper on singularitics the regular term seems to be the
feast important and, for clarity. has not been plotted in the following figures, An idea as to
its magnitude can be obtained by comparing the total stress with both of the singular parts
(and usc ot eyn (17)).

To tormulate finite element equations the cigenvalue problem defined in egn (A16) of
the Appendix has to be solved first. The resulting cigenvalue o, < 0 (0, = 0, sce Appendix)
and corresponding (normalized) cigenvector , define the second singular term given inegn
(2b). I addition to that, for (90 /15°) and (=15 /75) laminates, q, has to be extracted
from eqn (A21). Since q, is uniquely determined (see Appendix and Zwicers ef al. (1982)),
in cgn (3) one should take ¢, = [, However, to have some additional verification of the
caleulations, we let ¢; to be unknown and to be caleulated just like ¢, Thus the value
¢; = LOmdicates that the procedure is correet.

All of the results which follow have been obtained with 9-node Lagrange elements and
the mesh shown on Fig. 2. The selection of the mesh was to roughly preserve the total
number of degrees of freedom comparing with the models used to obtain existing reference
results in Wang and Yuan (1983).

While interpreting the plots representing the stress distribution along the interface one
has to keep in mind that the first point at which stresses were evaluated, was at the distance

9-node Lagrange elemnents
,//
-
‘ ’
i o
2.5
!
-
2 A

Fig. 2. Mesh used in the calculations.
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Table 1. Characteristics of #* singularity for (45 /=43 ) com-
posite (¢ = 0.0255757)t

Present
Parameter results Waung and Chot (1982a.b)
I —15.248 —
S, —-7.584 ~7.535
b 16.551 16,443
%, 0.000 0.000

+ No log r singularity in this case (Zwiers et al., 1982).

x = 0.001003 in. from the free edge. Thus, distribution of the stresses in the immediate
vicinity of the singular point, should be qualitatively assessed based on plotted contributions
of the r* and/or log r terms.

Furthermore, all of the stress components have been evaluated directly along the
interface and resulting values for the adjacent layers have been subsequently averaged. This
is different than the approach frequently used in the finite elements analysis of the problem
in which to smooth out the stress distribution along the interface, an extrapolation technique
based on internal points of the element is used prior to averaging (Wang and Stango, 1983).
The approach adopted in this paper was to emphasize that when both possible singularities
are included the stress distribution is sufficiently good without extrapolation. When some
of the existing singularitics are removed. though, this is not necessarily the case. Thus
importance of both of the singular terms is additionally demonstrated that way.

Various solutions exist for the (45°/—45") composite (Pipes and Pagano, 1970;
Herakovich et al.. 1976 ; Wang and Crossman, 1977 ; Wang and Choi, 1982a.b; Wang and
Yuan, 1983), this case has been therctore sclected here as a kind of benchmark problem.
The results presented in Table 1 and on Fig. 3 show that the approach adopted here is
equally accurate as far as stress disribution and paramcters specifying singularities are
concerned. Although the results presented here have been obtained for the discretizition
shown on Fig. 2, calculations were also made for coarser meshes and the corresponding
results were only slightly worse, The errors were within a few percent,

The second problem considered here was the (90'/157) composite. As can be seen in
Zwicers er al. (1982), for this orientation a strong log r singularity should exist (see Fig. 5
in Zwicrs et al. (1982)). Three different groups of results were obtained by including either

E]
-
3
"
o i
-
. |
=
23]
w !
: g
22y
ol IR
-
179]
g
/n
—
o
S b=
\q
1 3]
o
T T "
0.0 0.5 1.0
X/b

Fig. 3. Stress distributions for (45 /45 ) composite laminate.
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one or both singular terms with the corresponding unknown coefficients. They are presented
in Table 2 and on Figs 4-6. The stresses presented in the figures illustrate their distribution
along the interface.

The value ¢, = 1.038 in Table 2 seem to be close enough to the theoretical value
¢; = 1.0 (see preceding sections) to validate the adopted approach and algorithm. To reach
this conclusion one has to take into account the approximate character of the finite element
method as well as the complex nature of the interaction between the two singularities in
this energy based method. This statement is supported by an increase in ¢, to 1.092 when
the * singularity is removed from the model. Similarly, the change of about 10% is recorded
in parameters specifying the #° singularity when log r terms are removed. From Table 2 and
Figs 4-6 we see that the logarithmic singularity has its major effect on the stresses ¢,,. This
influence is so strong that the total value and the logarithmic part of ¢,; almost coincide
as the singular point is approached (Fig. 5(a)). However. Fig. 5(a) also reveals that the
interaction of the two singularities is more complex than that. It is seen that while ¥ in o,
approaches oo the log r term approaches — 0. Since the #* singularity is stronger than log r.
in the extremely small neighborhood of the singular point the sign of &, must be positive
despite the impression given by Fig. 5(a). In addition to that the r* term has a relatively
large influence on the stress components ¢,; and ¢,. within the element including the
singularity point. This can be deduced by comparing the results obtained without the r*
term, presented in Figs 4(c) and 6(c). with those in Figs 4(a) and 6(a). respectively, where
both singularitics arc included.

In addition to Zwiers ¢r al. (1982), the logarithmic singularity has been also discussed
in Davet and Destuynder (1986). The latter paper deals only with a special case in which
0, = 0,4+90" and, in this context, scems to suggest that no other (than logarithmic) singu-
larity cxists. On the other hand solution of the cigenvilue problem defined by eqn (A16)
gives §, = —0.0302747 which clearly shows that the singularity of the type £, 0 < Ois also
posstble. To provide some additional insight into this case we consider as the third example
the (= 15°/75") composite. The results are included in Table 3 and on Figs 7 9.

There are few interesting aspects of these results. First, contrary to the implication of
Davet and Destuynder (1986), the r* singularity is present in this problem. The second
aspect is that, relative to the log r term, its significance in the overall picture is smaller than
in the case of the (90 /15°) composite. This is reflected in a dramatic change of parameters
specifying the 7 singular term when the log r part is excluded from the model. Another
interesting observation is that, as in the case of the (90 °/157) composite, the logarithmic
terms contribute mainly to ., (see Davet and Destuynder (1986)) of the three interface
stress components. As can be seen by comparing Figs 5(a) and 8(a), however, this time the
r* and log r contributions to ., are complementary rather than competing, they both
approach — . As far as 65, and a5, is concerned, examination of Figs 7(a)—(c) and 9(a)-
(c¢) reveals, that erroncous distribution of those stress components in the elements adjacent
to the singular point occurs no matter which of the singularities is excluded from the model ;
both of them are therefore essential. Finally, the resulting values of ¢, are close enough to
the theoretical value ¢, = 1.00 to say that the self-imposed check of the model and of the
algorithm is passed.

Table 2. Characteristics of singularitics for (90 /15) composite
(0 = —0.0328141)

7 and log r Oniy ~ Only log r
Parameter included included included
G 1.038 — 1.092
C, -31.235 —34.424 -
st 4.301 4,742 —_
St 0.271 0.299 _
S ~0.438 —0.438 —_
S, 0.000 — 0.000
Sy 0.714 — 0.751

St 0.000 — 0.000
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Table 3. Characteristics of singularities for (—~15 75 ) composite
(0 = —0.0302747)

rand log r Only ¢’ Only log r
Parameter included included included
C, 1.030 — 0.960
C. 14.241 2.369 —
S, —1.999 -0.332 -
A -1.520 —0.253 —
S -0.179 -0.0297 —
s, 0.000 — 0.000
S 0.645 — 0.601
s, 0.000 — 0.000

5. CONCLUSIONS

The results presented in this paper clearly show that incomplete theoretical information
about the number and/or the type of the singularities involved in a problem may significantly
distort the picture emerging from the calculations. Such incompleteness of the information
has been modeled here by intentionally retaining in the analysis only one of the two
singularitics known to be possible in the considered cases. It is shown that in the direct
evaluation of stresses along the interface (compare Wang and Stango (1983)) the inac-
curacics resulting from an incomplete repesentation of singularities may significantly change
the corresponding stress distributions even away from the singular point. Such incom-
pleteness allects also various parameters representing strength of the retained singularity.
In some cuses, exemplified here by the (= 157/757) composite analyzed with 7 as a sole
singular term, these parameters can be several times different from those obtained when all
of the singularitics of the problem are included. These eflects are important considering
that accurate information about singularities would enable one to assess i a possibility of
delumination exists.

The qualitative side of the above results was, to some extent, expected. Quantitatively,
however, the numbers obtained show rather drumatically how important it is to combine
a caretul theoretical analysis of the singularities involved with numerical calculations. For
instance, despite the fuct that the log r singularity is weaker than the # singularity, and
might be expected to play a minor role as far as the results are concerned, its omission in
the analysis of the (=15 /90 ) laminate changes the strength of the #° terms about six times.
In this context the discovery of the log r singularity has rather profound significance.

An additional conclusion resulting from the conducted analysis is that, in terms of
accuracy and performance, the enriched finite element technique parallels other powertul
methods, including the hybrid stress method used for similur caleulations in Wang and
Chot (1982a, b) and Wang and Yuan (1983).
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APPENDIX
Derivation of the displacement field related to 7 and log r singularities will be outlined here.

Referring to the coordinate system shown on Fig. | and recalling independence of the stress and strains on
x' (see Section 2) the following equilibrium cquations are deduced for the present problem:

g, +06,, =0 (Al)
They are combined with the kinematic and constitutive equations

g, = Wu,,+u,,) (A2)

a, = C by (AJ)

to form the complete set of governing cquations.
In the finite clement implementation of the problem the components of the strain and stress tensors will form
the following vectors :

Ty

LT
LFH

. £22
s g .
a= . c={ } §=< gy > (A4)

47 £33

&1
T2

I

Ty
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The component €., in the strain vector e has been isolated because of the independence of the unknown
displacement ticld of x'; we assume &, = | to specify the intensity of the load.
With notation (A4) the following matrix relationship is equivalent to eqn (A3):

g =Ct (AS)

where the 6 x 6 matrix C can be related to the components C,,, of the material tensor of eqn (A3).
Solution to the governing equations is sought in the following form (Zwiers et al.. [982):

u =Y 1} 1) +0,560,x° (A6a)

Z = x'+px* (A6b)

where J,, is Kronecker's delta, p and 7 are constants to be determined and f is a set of linearly independent
functions. Substitution of the assumed displacement field into the governing equations. eqns (A 1)-(Al). shows
that «, of eqn (A6a) may be a solution if

D=0 (A7)
for every x, where D, is independent of x
Dy = Coiy +P(Cru: +Coui ) +p°Crir (AR)
Thus, the constant p of egn (A6b) has to be selected so that
det (D) = 0. (A9)

For any value p satisfying eqn (AY), the corresponding cigenvector ¢ can be obtained from eyn (A7), This
shows that ¢ are the same for al 275, so the superseript 2 can be omitted. The related solution defined within to
an unspecitied yet functions /(7). can be subsequently obtaimed front eqn (A6a).

Considering eqns (AS) and (A9) one can scee that eqn (A9) is of sixth order with respect to p, there are
theretore six solutions for p. However, one can show (Zwiers e ol., 1982), that those are formed of three pairs of
complex conjugate values p,, g, Lo 1,2, 3 (the overbar indicates the complex conjugate). Consequently, in view
ol eyn (A8) there are also three pairs of related cigenvectors v, 6. I any case, for any function /7, the six
cigenvalues and corresponding cigenvectors resalt in six solutions which because of the linearity of the problem,
can be lincarly combined to yicld a general solution,

Sinee detecting possible singularities is here of particular interest, the following functions /™ are assumed :

Sy = 20N (L +8,). (A10)
For this selection, the stresses resulting (rom eyns (A2) and (A3) have the form

ds*
6, = Z ty d/ +Cpasbny = Z 1,24+ C e, (AlL)

T, = ((-.I)Ll +l)(‘uk.’)l'k (Allb)

which results in a singularity at x' = x7 = 0if, for the sume x, 3, < 0. As explained in the previous paragraph
combination of the above expressions related to different values of p, (and ;) gives

]
u =Y S (Al 200 BIE, 2L +3,) +6,,00,x° (A12)
x L=

while the refated stress components are expressed as follows:

]
a,=Y T AT I+ BiE, 20 +C, . (A13)

1 L=~
Everything described so far has to be done for cach layer of the composite separately (since egn (AJ) is
ditferent in cach Liyer) but with the same /7. The resulting two functions. cach having the form given in egns
(AL12) and (A1), have to be now combined to meet six interface compatibility conditions (three tor stresses and
three for displicements) and six free edge stress conditions (three for cach layer). The resulting 12 equations have
the following mathematical structure

Y PM(S,)q, = £,.b (A1)
in which q' combines six constants 47, 8;. L = 1,2, 3 for each layer, b results from the presence of the term
involving £,y in eqns (A12) and (A13), and r is the radius in the polar coordinate system (Fig. 1). The presence
of an arbitrary value of rin eqn (A1) indicates that to satisfy eqn (A 14), one of the J,'s say §,. must be zero and

M.(0)q, =&, (AL5)
M(d,)q, =0, 2=23.... (AL6)

It



DY)

Logarithmic term in the free edge stress singularity of composite luminates 9

The first of the above equations gives a particular solution, while from the second equation transpires that for
the problem to have a singularity the equation

det [M,(8)] = 0 (AIT)

must have a solution J, the real part of which is Re d, < 0. This negative value (or values) of 4, ulong with
corresponding eigenvectors q,. obtained from eqn (A16). define the form of the singular contribution to the
displucement field given in eqn (A12). In general both 3, (the one with Re 4, < 0) and corresponding 4}, B} for
both luyers may be complex. Results reported by Zwiers et al. (1982) seems to indicate, however, that there exists
only a single real negative root of eqn (A17) which we denote . = ¢ and which represents the r* singularity. In
this case. the real solution can be obtained by combining the real and imaginary parts of ¢, Z,/ **. Thus

-

u =

{4, Re (0, 20+ B, Im (0, 201 +0) (ALS)
1

™~
L

where A, and B, (as well as §) are now real. All of those numbers can be obtuined by solving the eigenvalue
problem similar to that given in eqn (A16) which can be readily obtained according to the procedure that has
been just described assuming w;” of eqn (A18) for the displacement field (Zwiers e af., 1982). As in any eigenvector
problem the eigenvector q. is defined within a multiplicative constant and. thus, so is the displucment field o

The logarithmic singularity comes about because of the difficultics with the satisfaction of Eqn (A15). It
appears that the matrix M (0) is always singular and a solution of eqn (A 15) exists only when the vector b belongs
to the space spinned by linearly independent columns of M, (0). Such a special situation happens to occur only
under special circumstances, namely for (6/ —#6) laminates and a particular family (#,/0,) composites (Zwicrs et
al.. 1982). In general eqn (A1S) cannot be satisficd.

The above situation indicates that, in general, for 8, = 0 the solution cannot have the form given in eqn
(A10) and in the corresponding egn (AL2). To rectify the problem, a different solution for 8, = 0 has been
obtained in Zwiers ¢f al. (1982) by means of the following technique:

P \
u' = o {}: (4 Re (e, Z3)+ B Im (0, Z3))/(1 +‘5.)} +rd, 0 (AL
1

= 0
l()| - b =0

DitTerentiation present in the above equation is performed assutming that A, and #, depend on 8, and leads to
the following result:

) 1
w o Y A Re (e 2 Wog Z) # B I (e, 7 log Zo+ Y [4] Re ey Z) + B I (0, 7)) +508,,x "

-1 -1

(A:())

where A7, B}, L= 1,23 is a set of new constants. Thus the solution given by egn (A20) is, in cach layer, defined
in terms of 12 constants A,, 8,, A}, B;. L.=1,2,3. They have to be determined from the same interface and
boundary conditions which previously led to egn (AlS). This time, the resulting system of equations has the
following form:

M())q, =0 (A2la)
M'(0)q, +M(0)q; = &,;b (A21h)

where M) and q, is the same as in eyn (A15) while M'(0) is a new 12 x 12 matrix and ¢ contains constants
A and B,

In view of egn (A20) it is clear that only the vector ¢ ol egns (A21a) and (A21b) is related to the logarithmic
term log Z,. The underlined part of eqn (A20) is lincar, therefore it can be well represented by the regular finite
clement shape functions and omitted in the singular logarithmic displacement ficld. As shown in Zwiers ef al.
(1982) the vector ¢, that defines this singutar field is uniquely determined from eyns (A21), und so is the tield
itself. 1 q, = 0 no logarithmic singuliarity exists.



